NC STATE UNIVERSITY

Computing the Hausdorff Distance Parth Parikh

Masters Thesis Defense, 05/01/23

Applications of Hausdorff Distance

- Find similar cyclone trajectories from set of historic cyclone trajectories
- Analyze migration trajectories of different types of birds

• Evaluation of 3D brain tumor segmentation (identifying tumor regions from MRI)

Khotanlou et al.

Nutanong et al.

What is Hausdorff Distance?

• The directed Hausdorff distance between sets A and B:

$$\mathbf{d}_h(A,B) := \max_{a \in A} \mathbf{d}(a,B).$$

• The **undirected Hausdorff distance** is the larger of the directed Hausdorff distances:

Introduction and Contributions

- Survey of Hausdorff Distance
- Greedy Trees
- Hausdorff Distance using Greedy Trees

Papers

- Proximity Search in the Greedy Tree
 - Symposium on Simplicity in Algorithms (SOSA), 2023
- Linear-Time Approximate Hausdorff Distance
 - The 30th Fall Workshop on Computational Geometry, 2022
- Approximating the Directed Hausdorff Distance
 - Submitted to 35th Canadian Conference on Computational Geometry, 2023
- Greedy Permutations and Finite Voronoi Diagrams
 - Submitted to Multimedia Exposition in Computational Geometry, SoCG 2023
- The Finite Voronoi Method
 - Prepared for resubmission

Survey of HD Techniques for Point Sets

Naive Algorithm for Directed Hausdorff Distance

```
procedure DIRECTED_HAUSDORFF_DISTANCE(A, B):
```

```
LB = 0
for a in A:
UB = float("inf")
for b in B:
UB = min(UB, d(a, b))
LB = max(LB, UB)
return LB
```

Survey of HD Techniques for Point Sets

- Previous surveys?
- Improvements on the naive Quadratic Algorithm
 - The Inner Loop is Nearest Neighbor Search
 - Nearest Neighbor Search is Overkill (The Early Break Heuristic)
 - Ordering Matters
 - There is Spatial Locality in the Searches
 - Preprocessing Allows for Efficient Branch and Bound Algorithms
 - Outer Loop Pruning
- <u>Most</u> heuristics were used for *constant factor* improvements

The Inner Loop is Nearest Neighbor Search

```
procedure DIRECTED_HAUSDORFF_DISTANCE(A, B):
```

```
LB = 0
for a in A:
UB = float("inf")
for b in B:
UB = min(UB, d(a, b))
LB = max(LB, UB)
CBSERVATION:
inner loop
sequentially computes
the nearest neighbor distance
of each point in A
```

return LB

Nearest Neighbor Search is Overkill (The Early Break Heuristic)

```
procedure DIRECTED_HAUSDORFF_DISTANCE(A, B):
LB = 0
for a in A:
    UB = float("inf")
                                  OBSERVATION:
                                   If
    for b in B:
                                  d(a, b) < LB
        UB = min(UB, d(a, b))
                                  in the inner loop,
                                  we can break early!
    LB = max(LB, UB)
    return LB
```

Ordering Matters

procedure DIRECTED_HAUSDORFF_DISTANCE(A, B):

There is Spatial Locality in the Searches

```
procedure DIRECTED_HAUSDORFF_DISTANCE(A, B):
```


return LB

Morton Curves for mapping multidimensional point sets to 1D

Preserves locality of data points

Preprocessing Allows for Efficient Branch and Bound Algorithm

Observation: Use both Idea #1 and #2

Outer Loop Pruning

Greedy Permutation and Greedy Trees

What is a Good Sample?

• A good sample can be observed using Hausdorff distance.

- We would like to capture the **geometry of the original set** with far fewer points
 - How?
 - Using two properties: **Packing** and **Covering**

Packing, Covering, and ε-Net

ε-PACKING

All pairs of sample points are *ɛ*-apart

 $\epsilon\text{-radius}$ balls centered at sample points that cover the set

Having seen that, we ask again, what is a Good Sample?

- Has an ε-net for some good ε
- If we know what ε is, we can construct it as:
- But, we might not know what the right ε is!
- How to compute ε-net for every possible ε?
 - And do it all at once
 - Answer: ??

Intuition behind Greedy Permutation

- Key insight:
 - If we have a **really really big** ε , one point would be enough (as it would cover everybody!)
 - For really really small ε , need to include all the points in the ε -net
- How does it change from one point to all of the points?
 - Start shrinking down the radius!

Step by step workout of Greedy Permutation

NOTE:

 It often suffices to have an α-APPROXIMATE GREEDY PERMUTATION.

 Can be computed in O(nlogn) time (Har Peled and Mendel)

3. We define: predecessor mapping ⊤

It maps each point in P to its closest point in the prefix Pi

4. $\epsilon 1 \geq \epsilon 2 \geq \ldots \epsilon 5$

5. Pi is the ɛi-net

Greedy Trees

Construction of a Greedy Tree

- Greedy Tree? Binary tree that uses Greedy Permutation to achieve packing guarantees
- Given Greedy Permutation (G) and Predecessor mapping (T) for point set P
- Radius of Node?

Construction of a Greedy Tree

- Greedy Tree? Binary tree that uses Greedy Permutation to achieve packing guarantees
- Given Greedy Permutation (G) and Predecessor mapping (T) for point set P
- Incremental construction:
 - Start with a root node centered at p_0
 - \circ Iterate through the points b in the permutation (starting at p_1)
 - Let a = T (b) and let x be the unique leaf of G centered at a
 - Create new nodes centered at a and b and assign them to be the left and right children of x

What kind of a binary tree is Greedy Tree?

- Ball Tree
- A ball tree on a set A is a binary tree defined by recursively partitioning A
 - Each node of the tree stores a **center** and a **radius** that covers the points in its leaves

Motivation behind Greedy Tree

- Lack of strong theoretical guarantees for ball trees
 - Leading to complicated data structures such as cover trees and net-trees
- Greedy Tree *provides strong theoretical guarantees* for proximity search queries
 - Constructed in O(nlogn) time using Greedy Permutation
- The radius of a node p is bounded

$$r_p \leq \frac{\varepsilon_p}{\alpha - 1}.$$

- Packing guarantee:
 - \circ Let x be a set of pairwise independent nodes from a Greedy Tree. Then the centers of x are: $(\alpha-1)r$

$$\frac{(\alpha - 1)r}{\alpha}$$
 – packed

where r is the minimum radius of any parent of a node in X.

Hausdorff Distance using Greedy Trees

A High Level Glance

- What?
 - \circ Computing (1+ ϵ)-approximate **directed** Hausdorff Distance in linear time
 - with O (n log n) preprocessing time (for Greedy Permutation)
- Input
 - \circ ~ Pair of Greedy Trees $\rm G_{A}$ and $\rm G_{B}$ for sets A and B, respectively
 - List of their nodes in non-increasing order of radius
 - Iteration order of the algorithm
 - $\circ \quad \text{Approximation Factor } \epsilon$

Intuition behind the Algorithm

Step by step workout of the Algorithm

Initializing the Neighbor Graph

Case: Node in GT-A

Case: Node in GT-B

Case: Node in GT-A

Case: Node in GT-B

Case: Hausdorff Distance

DIRECTED HAUSDORFF DISTANCE FROM A TO B IS d(a1, b0) = 10 = L

A better Stopping Criteria

- Key Idea: Stop once the unprocessed nodes have radii **too small** to significantly affect the LB, and return L
- What is "too small"?
 - If the radius r of the largest node yet to be processed is

$$r \le \frac{\varepsilon}{2}L$$

Correctness

- We show that:
 - $\circ \quad \mathsf{L} \leq \mathsf{dirHD}(\mathsf{A},\,\mathsf{B}) \leq \mathsf{L} + 2\mathsf{r}$
- Thus, when $r \leq \frac{\varepsilon}{2}L$
 - Directed HD is $(1+\epsilon)$ -approximate

Conclusion

- Questions?
- Code is available https://github.com/donsheehy/greedypermutation
- Thank you Don, Siddharth, Oliver, and Kirk

Additional Resources

- Proximity Search in the Greedy Tree
 - Symposium on Simplicity in Algorithms (SOSA), 2023
- Linear-Time Approximate Hausdorff Distance
 - The 30th Fall Workshop on Computational Geometry, 2022
- Approximating the Directed Hausdorff Distance
 - Submitted to 35th Canadian Conference on Computational Geometry, 2023
- Greedy Permutations and Finite Voronoi Diagrams
 - Submitted to Multimedia Exposition in Computational Geometry, SoCG 2023
- The Finite Voronoi Method
 - Prepared for resubmission