Bookmark Classification using Multinomial
Naive Bayes Model

Parth Parikh
August 2019

A browser-based bookmark serves a single purpose of storing the informa-
tion for later retrieval. They are primarily composed of the following data:
Uniform Resource Identifier (URI), favicon, title and time-stamp. As the
number of bookmarks a user has increases, the ability to quickly retrieve
their favorites can decrease significantly. Through this article, we will solve
the above problem by automatically classifying the bookmarks into various
categories.

Text classification is a method to map a document to one or more cate-
gories. In our case the document would be created using the bookmark data
collected by the web-browser. For the time being, I will be using the follow-
ing generic categories: News, Business, Programming, Shopping, Social and
Technology. Each category will have relevant documents which will act as a
corpus for that category. In the later part of this article I will discuss the
possibility of adding user requested categories.

We start by introducing a supervised learning algorithm called multino-
mial Naive Bayes, a probabilistic learning method. The goal is to find the
category which closely resembles the document to be classified. The proba-
bility of a document d being in category ¢ is computed as

P(c|d) x P(c H P(tg|c) (1)

1<k<Ng4

where P(tx|c) is the conditional probability of ¢ occurring in a document of
category ¢, where t;, is a term which is part of the vocabulary of the document
to be classified. It tells us how well would the term t; fit in the category c.
P(c) is the prior probability of a document occurring in category ¢ [1].

1

In the above equation, to prevent floating point underflow we add log-
arithms of probabilities instead of multiplying them. The revised equation
would then be

log P(c|d) o log P(c) + Z log P(tg|c) (2)

1<k<N,

In the equation (2), the category ¢ which maximizes the value log P(c|d) will
be the optimal category for the document d. We define P(c) as

N,
N (3)

where N, is the number of corpuses we have for category ¢ and N is the total
number of corpuses of all the categories.
Lastly, the estimate P(t|c) will be

ng + 1
n + |Vocabulary|

(4)

where n is the total number of word positions in the category c¢’s corpuses,
ny, is the number of times term ¢, is found among these n word positions and
|V ocabularyl| is the total number of distinct words in all the corpuses [4].

We now define the document d, which is the document to be classified.
The goal is to curate d such that it faithfully represents the bookmark’s
content. The first option we have is to let the website furnish us with this
information while the next option would be to scrape the website’s content.
The former technique works well with popular websites while latter helps in
categorizing uncommon sites. Most of the popular websites on the Internet
provide <meta> tags with attributes like keywords and description. After
exploring various combinations, I found that the above mentioned <meta>
tags combined with the site’s title forms the perfect document for categorizing
any bookmark.

If the <meta> tag is not provided by the website, the site’s content can be
used for the document’s vocabulary. In the worst case, the site may render
the content dynamically. To overcome such situations, we can either use the
site’s URI or title to query a 3"¢ party API which specializes in providing
domain information. I have observed that Wikipedia’s MediaWiki API [2]
provides optimal results for semi-famous domains.

Terminal

Figure 1: Ten random bookmarks being categorized using multinomial Naive
Bayes model with the site’s content being excluded from the document’s
vocabulary. Domains which encountered network error are labeled as Failed.

Once a document is curated, performing text normalization such as stop
word and punctuation filtering, single case conversion and lemmatization can
help improve the accuracy of the classification algorithm.

Another interesting approach to curate a vocabulary d as mentioned in [5],
is to use the user’s recent search-engine history. The keywords a user queried
in the search-engine can be used in the vocabulary. This is possible because
web-browsers store the time-stamp of each bookmark as it’s meta-data. This
time-stamp along with the URI can be compared in the user’s history log
to find the relevant search-engine query, which is most commonly a GET
request. An example for the same is mentioned in Figure (2).

Corpuses are another integral part of this implementation. The straight-
forward way to design a corpus is by populating it with jargons. This
method alone won’t give optimal results as based on equations (1) and (4),
P(c|d) x ng. Hence the number of times the term ny is found in corpus
forms a deciding factor. By meaninglessly populating the corpus with jar-
gons, it becomes difficult to get a good estimation for n,. To correct this
problem, we use text from various blogs, glossaries and encyclopedias. For
an optimal classification, our aim should be to find a good balance between
ng and number of unique words.

https://www.google.com
/search?client=ubuntu&
channel=fs&
g=top+shopping+sites&
ie=utf-8&oe=utf-8

{top, shopping, sites}

Figure 2: Keywords extracted from a Google search query

r] tree corpus/

technologv_
tec

Figure 3: Generic corpuses curated for various categories

Based on my observation, corpuses curated from the categories’ Wikipedia
page are able to provide optimal results. One category in which Wikipedia’s
corpus performed below expectation was Programming. To improve the per-
formance, I curated my Programming corpus from [3]. Figure (3) shows the
list of corpuses I used during my implementation. Except for programming
corpus, the rest are curated from Wikipedia, where the file-name corresponds
to the title of their respective Wikipedia page.

Classifying user requested categories using the above technique can easily
be done by curating the corpus from the relevant Wikipedia page. We can
set a depth value and recursively crawl the page’s See also section to auto-
generate the corpus.

Finally, as we have used a supervised learning model for this project, a
good future problem would be to tackle this using an unsupervised learning
model. Furthermore, adding language detection on the site’s content and
increasing the language-based diversity of the corpus can further improve
our training model.

References

[1] Prabhakar Raghavan Christopher D. Manning and Hinrich Schiitze. In-
troduction to Information Retrieval. Cambridge University Press, 2008.

2] Wikipedia contributers. MediaWiki Action API opensearch. https://
www.mediawiki.org/wiki/API:Opensearch. Accessed: 2019-08-17.

[3] Computer Hope. Computer programming terms. https://www.
computerhope.com/jargon/program.htm. Accessed: 2019-08-18.

[4] Tom M. Mitchell. Machine Learning. McGraw-Hill, New York, 1997.

[5] Chris Staff and Ian Bugeja. Automatic classification of web pages into
bookmark categories. In Proceedings of the 30th Annual International
ACM SIGIR Conference on Research and Development in Information
Retrieval, SIGIR ’07, pages 731-732, New York, NY, USA, 2007. ACM.

